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SYNOPSIS 

In order to describe viscosity function behavior dependent on shear rate in steady-shear 
flow and to predict the first normal stress function without using discrete relaxation time 
spectrum, we combined the microscopic entanglement concept based on Graessley’s en- 
tanglement network theory with the macroscopic constitutive model. The viscosity function 
derived from the entanglement model has three adjustable parameters and it was assumed 
to have the form of the inverse cotangent function of the shear rate. Then the first normal 
stress function is obtained using the Wagner’s relationship. The model prediction for the 
first normal stress coefficient is compared with experimental data of polymer melts. Even 
though viscosity function and the first normal stress function vary over a wide range of 
shear rate, they were in good agreement for polymer melts at  high shear rate. First normal 
stress function do not show any numerical artifacts. However, discrepancy in the first 
normal stress function occurs at  low shear rate. This is due to the irreversibility of the 
entangled molecule’s motion that was not taken into consideration in the entanglement 
model. Irreversible nonaffine motion is introduced by adding a term similar to the White- 
Metzner model’s irreversible factor. Addition of irreversibility in the calculation of the first 
normal stress function considerably improves the agreement. Other comparisons are also 
presented and related discussions are given. 0 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

To characterize the steady-shear flow of “simple” 
incompressible fluids, it is well known that three 
independent stress functions, shear stress and the 
first and second normal stress difference, are suffi- 
cient.’ From these functions, three important ma- 
terial functions for the flow are obtained, viscosity 
function defined as the ratio of shear stress to shear 
rate and the first and second normal stress function 
defined as the ratio of the first and second normal 
stress difference to the square of the shear rate. For 
some fluids the viscosity and the normal stress 
functions can vary with the shear rate by a factor 
of a few orders. The viscosity and normal stress 
functions of molten thermoplastics or polymer so- 
lutions decrease with the shear rate. At low shear 
rates, viscosity approaches the “zero shear viscosity” 
and then it decreases in the so-called “power-law’’ 
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region.’ The first and second normal stress functions 
are known to similarly behave as the viscosity func- 
tion. 

To represent the appearance of the viscosity ver- 
sus shear rate, many models were suggested such as 
the power-law model,3 Cross model,4 Bueche- 
Harding model, Ellis model, Eyring model, and 
Carreau-Yasuda m 0 d e 1 ~ ~ ~  to name a few. The Eyring 
model has a theoretical basis and others were pro- 
duced by empiricism. The strong dependence of 
polymer viscosity on shear rate is attributed to the 
strong effect of shearing on entanglements. This was 
studied and explored by many researchers experi- 
mentally and theoretically.” 

The first normal stress function is related to the 
elasticity of fluid.2 From many constitutive rela- 
tionships, it should be noted that the first normal 
stress function is also a decreasing function of the 
shear rate as is the second normal stress function, 
even though the prediction does not generally show 
excellent agreement with experimental results.’’ 

Some time ago, Graessley” derived an equation 
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for the steady-state viscosity in shear flow based on 
the entangled molecular theory. It was a kind of im- 
plicit expression and did not get much attention. 
Even though there are many simple expressions for 
the viscosity of shear flow, we used Graessley's idea 
to represent the shear viscosity dependence on the 
shear rate. There are three reasons for doing this. 
The first is to adopt an expression from the molec- 
ular entanglement concept. This gives a more plau- 
sible expression rather than a random empirical 
equation. The second reason is to investigate the 
effect of molecules's nonaffine motion (chain re- 
traction) not considered in Graessley's model. The 
final reason is to apply Wagner's relationship to get 
the first normal stress function values from the shear 
viscosity data. Stastna and DeKee l2 have compared 
several relationships proposed to calculate the first 
normal stress coefficient, q1 from the viscosity, v. 
These are based on empirical constitutive equations, 
and some success in their application has been 
claimed. However, they conclude that such proce- 
dures do not have universal applicability to poly- 
meric fluids. We will correlate the viscosity and the 
first normal stress coefficient using the same pa- 
rameter values and Wagner's relationship. 

This is an ab initio study to search for a useful 
expression for the steady shear viscosity and for the 
relation to appropriately predict the first normal 
stress function. 

THEORETICAL BACKGROUNDS 

An approximate molecular theory of steady flow in 
amorphous polymers was developed by Graessley l1 
after considering the properties of a deforming en- 
tanglement network. The viscosity of a polydisperse, 
highly entangled system at finite rates of deforma- 
tion can be expressed formally in terms of integrals 
involving two functions." One function is the ratio 
g (+, m )  , the average number of entanglement junc- 
tions for a chain of length m in a steady flow field 
of shear rate r ,  divided by the number in the limit 
of + = 0. The other function is also a ratio h (+, m )  , 
the rate of energy dissipation by a chain of length 
m in a system with shear rate + and some prescribed 
communal friction coefficient f divided by + 2 ,  di- 
vided by the value of that same quantity at the same 
value of { but in the limit of + = 0. Graessley ex- 
pressed g (+, m )  and h (+, m )  by considering the 
probability of entanglement formation." Supposing 
the probability is inversely proportional to the 
square of flow direction distance, which seems more 

reasonable to consider the molecular weight distri- 
bution form, l3 we get the following equations; 

h(+, rn) = - cot-% - 2 ] 
n- 7 1 + 8  ( 2 )  

where 8 = ( 1 / 2 ) + ~ ( + ,  m ) .  These are slightly dif- 
ferent from the original Graessley's equations. The 
time 7 was taken to be the order of the Rouse re- 
laxation-time parameter, evaluated at the existing 
rate of deformation." For small 8, h (+, n )  = 1 and 
for large 8, it is proportional to cot-'8. After the 
expansion of eqs. ( 1) and (2)  in series form, we may 
write the general viscosity function in monodisperse 
system as 

implicating all assumptions to be in the functional 
form. At large value of 8, however, higher order terms 
of cot-% in eq. (9 )  diminish more rapidly than the 
first-order term. Hence discarding higher order 
terms than the first order presents a simple equation. 

where c1 and c2 are constants and X is another func- 
tion of + and m. Intuitively, we feel that a formula 
like eq. (4) is a corresponding form to the Rouse 
model because the Rouse model represents a 
Brownian motion of coupled oscillators of which 
motions are expressed in trigonometric function 
form.14 As shown later, however, this function form 
is also related to other constitutive equations derived 
from continuum mechanics theory. By changing the 
relaxation time parameter from the Rouse relaxation 
time to characteristic time of the system A, we can 
relax the requirement that the value of r0, the re- 
laxation time at zero of deformation, is correlated 
with the corresponding Rouse parameters in a man- 
ner independent of molecular weight distribution. 
If X depends on (+, m )  that means implicit depen- 
dence on viscosity, eq. ( 4 )  is a complicated equation 
that needs numerical calculation. On the other hand, 
if we take X as a system's characteristic relaxation 
time, then eq. (4) can explicitly describe the behav- 
ior of viscosity function. 

Until now, we derived a viscosity functional form 
based on the idea from the entanglement theory. 
Then using the shear stress and normal stress dif- 
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ference relationship as Graessley did," we can cal- 
culate the first normal stress function from the im- 
plicit viscosity functional. However, we want to get 
an explicit form of the first normal stress function 
for a more practical purpose. So we abandon Graes- 
sley's method and use the Wagner's relation~hip'~ 
between the viscosity function and the first normal 
stress function. According to Wagner, a relationship 
between the viscosity function, q, and the first nor- 
mal stress function, \kl , in steady-shear flow exists 

Putting eq. (4) into eq. ( 5 )  presents the first normal 
stress function as following: 

This function is similar to the first normal stress 
coefficient of the so-called "corotational Maxwell 
m~de l . " '~  Therefore, if we are able to deduce the 
semiempirical viscosity function from the experi- 
mental data, then we can also obtain the first normal 
stress function, which enables us to use the consti- 
tutive equation from continuum mechanics such as 
the K-BKZ m0de1.'~~'~ 

CALCULATION AND COMPARISON WITH 
EXPERIMENT 

In order to see how the model works, first we fit 
experimental data used by Bird et al.''xl' and Wag- 

rl 
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ner.15 The shear viscosity function q for six polymer 
melts versus the shear rate are shown in Figures 1 
and 2. The fitting parameter values are presented 
in Table The solid lines are optimized fittings. 
Agreement between predicted and measured values 
is quite good. The intrinsic property of inverse co- 
tangent function presents a sigmoidal curve that at  
high shear rate reaches a constant value similar to 
infinite shear rate viscosity. Provided the viscosity 
data could be obtained through the whole region of 
the shear rate region, which has been done seldomly 
due to measuring instrument limit, this function can 
qualitatively describe the viscosity function behavior 
from low shear rate, through the power-law region 
and to infinite shear rate. However, inverse cotan- 
gent function has the limit in fitting the polydisperse 
system, especially when the molecular weight dis- 
tribution is very broad. This is due to the explicit 
expression of the relaxation time that takes account 
of the nonlinearity between the viscosity and the 
shear rate. For very polydisperse polymer melts, the 
viscosity function varies a few orders of magnitude 
in a wide range of shear rate.23 For monodisperse 
polymer, shear rate variation seldom goes over two 
or three decades in transition region. Inverse cotan- 
gent function works well for the polymer melts 
whose transition region is narrow. If the transition 
region expands over four decades of shear rate, in- 
verse cotangent function converges to a constant 
value. 

Figures 3 and 4 show the normalized dimension- 
less first normal stress function for those polymer 
melts of Figures 1 and 2 versus the nondimensional 
shear rate A,?, where X, is the relaxation time from 
experimental data. The solid lines represent eq. (6),  
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Figure 1 
( A )  160°C; ( 0 )  180°C; (0 )  200°C; (-) calculated values usingeq. ( 4 ) .  

Viscosity function of low-density polyethylene melt (data of Chen and Bogue"): 
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Figure 2 Viscosity function of three polymer melts: (0) polystyrene, 180°C (data of 
Ballenger et al?'); (0) high-density polyethylene, 160°C (data of Ballenger et al.'l); ( A )  
phenoxy-A 212°C (data of Marsh"); (-) calculated values using eq. (4 ) .  

where the parameter values of nonlinearity, n ,  were 
Wagner's adjusted values to give best fit to the ex- 
perimental data using Carreau's model l5 shown in 
Figures 3 and 4 as dotted lines. For low density poly- 
ethylene melt data (Fig. 3 ) ,  agreement between 
predicted values of the first normal stress function 
and experimental data is quite encouraging. For 
other polymers in Figure 4, the agreement is not as 
good at  low shear rate. These polymers are consid- 
ered to have a broad molecular weight distribution 

that makes it difficult to characterize the material 
with a single characteristic time. However, we are 
encouraged by the fact that artificial effects in the 
prediction of the first normal stress function that 
appeared in the Carreau's viscosity equation15 does 
not occur in the current model's prediction. Because 
the viscosity function has the shape of the inverse 
cotangent function, its derivative never produces a 
maximum point. Inflection points of the Carreau's 
model in viscosity function prediction caused arti- 

Table I Properties of Test Fluids and Parameters Used for Fitting 

Carreau's Viscosity 
Equation Parametersa 

Parameters Used in eq. (4) 
T 710 A. Damping 

Constant, 
Polymer Melts ("C) (Poise) ( s )  N nb c1 CP x 

Low-density polyethylene" 160 2.3235 7.18 0.24 0.13 4.09334 1.15635 2.303 
Low-density polyethylene" 180 1.2135 5.23 0.217 0.13 3.0434 5.734 2.196 
Low-density polyethylene" 200 6.4334 2.86 0.207 0.13 2.10934 2.7334 1.505 
High-density polyethylene" 160 8.9234 1.58 0.252 0.2 1.21834 5.67834 0.79 
Polystyrenez1 180 1.4835 1.04 0.301 0.2 1.3134 9.134 0.432 
Phenoxy A'' 212 1.2435 7.44 0.136 0.18 4.68834 4.9134 1.92 

2 = [l + ( L . i , ) 2 ] - N  

a Carreau's viscosity equation is 

?a 

2N 
and the first normal stress function is derived as 

\k, = - L+ 11 + ( x e i , ) 2 ] - ( N + U  

where X. is the relaxation time and qo is the zero shear rate viscosity. Infinite shear rate viscosity was assumed to be zero (see Wagner"). 
x a o  n 

Damping constant values, n, are those used by Wagner." 
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Figure 3 Normalized first normal stress function (!P: = 7r!P1/4X,(9~ - qm), where qo is 
zero shear rate viscosity, qm is infinite shear rate viscosity, and A, is the relaxation time 
used for Carreau's model (see footnote of Table I )  for low density polyethylene melt (data 
of Chen and Bogue"): ( A )  160°C; (0) 180°C; (0) 200°C; ( -  - -) predicted values using 
Carreau's viscosity function (Wagner"); (-) predicted values using eq. ( 6 ) .  

ficial maxima in the first normal stress function cal- 
cu1ati0n.l~ 

ular weight distribution, which hampers the current 
model from fitting the experimental data with only 
one characteristic time. In this sense, Wagner's finite 
series approach is worthy of consideration. Using 
five relaxation times, Wagner l5 could get markedly 
improved agreement. However, even though using 
a discrete spectrum is a reasonable approach to fit 
the experimental data, it requires too many param- 
eters, which is not practical to be used in the sim- 
ulation. The second factor we should take into con- 

ADDITION OF CHAIN RETRACTION AND 
DISCUSSION 

Some factors are believed to have affected the cur- 
rent model's first normal stress coefficient predic- 
tion. The first is these polymers have broad molec- 

L . . *  . on. I 

1 02 101 -1 0- 

Yl* 101 100 -1 0- 

I "  

1 0- l o o  10' 1 o2 

Figure 4 Normalized first normal stress function for three polymer nelts, !P; is the same 
as in Figure 3: (0) polystyrene, 180°C (data of Ballenger et a1.2'); (0) high-density poly- 
ethylene, 160°C (data of Ballenger et  al."); ( A )  phenoxy-A, 212°C (data of Marsh"); 
(- - -) predicted values using Carreau's viscosity function ( Wagner15); (.-) predicted 
values using eq. (6 ) .  
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sideration is that we used the oversimplified form 
for the approximation of viscosity function in that 
we kept only the first-order term in eq. (4 ) .  However, 
higher order terms would affect the prediction of the 
first normal stress coefficient at high shear rates not 
at low shear rates. The other factor we did not take 
into consideration is the nonaffine motion. The 
strands of polymers slip with respect to the defor- 
mation of the macroscopic continuum. This changes 
the formula for the stress tensor when the motion 
becomes n~naffine.,~ The K-BKZ model that Wag- 
ner used is thermodynamically reversible, in prin- 
ciple, if the deformation and its reversal occur rap- 
idly enough. According to the constitutive equation, 
all works exerted to deform the material can be re- 
covered in the reversal of the deformation. However, 
the nonaffine motion should not be regarded as re- 
versible. This is evident from Wagner and Meis- 
sner's work 25 that excellent agreement in recover- 
able elongational strain after prior steady elongation 
for low-density polyethylene is obtained when ir- 
reversibility is included in the integral equation. The 
nonaffine motion also produces shear thinning and 
strain softening that is a relaxation process that oc- 
curs faster than the deformation. 

An irreversible constitutive equation was consid- 
ered by Wagner (Wagner's second model)26 and 
White and M e t ~ n e r , ~  in a different way. While 
Wagner incorporated the irreversibility in the 
damping functional having the minimum value to 
remove the anomaly in the reversing step strain ex- 
periment, White and Metzner noted that high strain 
rates should reduce the relaxation time by which 
the shear viscosity decreases with increased + if X 
is a decreasing function of the second invariant in 
the steady shear flows. The obvious advantage of 
the White and Metzner model is that it has the flex- 
ibility to predict the shear viscosity and the first 
normal stress difference of any polymeric fluid using 
only one relaxation time that can obviate the use of 
relaxation time spectrum. Ide and White28 proposed 
the following equation for the relaxation time in 
steady flows. 

( 7 )  

where X o  is the relaxation time at zero shear rate, a 
is an empirical parameter, and D is the deformation 
rate tensor. Using this form for X w M ( I I D ) ,  the 
steady-state viscosity and the first normal stress 
coefficient of the White-Metzner model are obtained 
as follows: 

Except for the dependence of relaxation time on the 
second invariant of the deformation tensor, the 
White-Metzner model follows the upper-convected 
Maxwell equation, which is the same type as the K- 
BKZ model we used." Taking into consideration the 
irreversibility of the nonaffine motion, we add one 
term like eq. (8) to the viscous function of which 
the first derivative about shear rate is similar to that 
of the first normal stress function of the White- 
Metzner model, eq. (9) .  The following viscosity 
function, a five constant model, is tried 

c3 
17 = c1 + czcot -l( A,+) + ~ 

1 + X,+ 
where X1 and X2 are relaxation times for affine and 
nonaffine motion, respectively. Figures 5 and 6 show 
the viscosity function calculation, which again show 
good agreement with experimental data. Then using 
eq. (5) ,  we calculate the first normal stress function 
as the following equation: 

Figures 7 and 8 show the first normal stress function 
compared with the experimental data. The param- 
eter values are presented in Table 11. The agreement 
is remarkably improved and quite excellent. Addi- 
tion of one more term for the irreversible nonaffine 
motion brings this improvement especially at low 
shear rate. This fact coincides with the physical ex- 
planation of the White and Metzner model that the 
relaxation time is reduced at high strain rate and 
due to the reduction of relaxation time, the polymer 
chain rapidly relaxes at high shear rates.26 It also 
reduces the retraction of the chain in nonaffine mo- 
tion. On the other hand, at low shear rates, relax- 
ation time is long, which would be enough for the 
polymer chains to retract from the macroscopic de- 
formation (affine motion of the Doi and Edwards 
model24). Inclusion of nonaffine motion, therefore, 
naturally compensates for the difference at low shear 
rate. 

It is well known that the description of the re- 
laxation spectrum by differential constitutive equa- 
tions is of comparable significance to the description 



STEADY-SHEAR VISCOSITY 635 

106 

l o 5  

( poise ) 

1 o4 
10-2  1 0- ' 1 oo 101 t (/set) 

Figure 5 
(A) 160°C; (0 )  18OOC; (0) 200°C; (-) calculated values using eq. (10) .  

Viscosity function of low-density polyethylene melt (data of Chen and Bogue") : 

of the nonlinear behavior.23 Although the fitting 
based on the superposition of the discrete mode can 
be successful in homogeneous flows, as the compar- 
ison with the experimental data showed, it is cer- 
tainly impractical in numerical simulations of more 
complicated flows and excludes the possibility of di- 
rect coupling between the various modes. For the 
comparison with the multiple mode model, we used 
the experimental data of Laun2' for low-density 
polyethylene which has a wide molecular weight 
distribution. This data was also used by Souvaliotis 
and B e r i ~ . ~ ~  They proposed a phenomenological vis- 

coelastic model of differential type along the lines 
of the White-Metzner modification where the model 
constants are functions of the invariants of an in- 
ternal tensorial structured parameter. Power-law 
type relaxation time was used in their model. The 
comparison of Laun's experimental data with the 
current model are shown in Figures 9 and 10 for 
steady shear viscosity and the first normal stress 
function. In spite of the fact that the melt is highly 
polydispersed, the agreement is quite reasonable. 
Also shown are predictions of the modified White- 
Metzner model (MMW) and Phan-Thien and 

Figure 6 Viscosity function of three polymer melts: (0) polystyrene, 180°C (data of 
Ballenger et al.'l); (17) high-density polyethylene, 16OOC (data of Ballenger et alF1); (A) 
phenoxy-A, 212OC (data of Marsh"); (---) calculated values using eq. (10). 
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Figure 7 Normalized first normal stress function for low-density polyethylene melt (data 
of Chen and Bogue2'), 9: is the same as in Figure 3: ( A )  160°C; (0) 18OOC; (0) 200°C; 
(-) predicted values using eq. ( 11 ) . 

Tanner model ( PTT)30 by Souvaliotis and Beris. 
Our model shows a better performance in the ex- 
perimental data fitting and demonstrates a greater 
flexibility. The first normal stress function shown 
in Figure 9 is also in good agreement. In our model, 
two relaxation times are optimized but its perfor- 
mance is better than the MMW and PTT models 
in which eight multiple modes were used to get the 
best fit. The exponents used by Souvaliotis and Beris 
for the viscosity data and first normal stress differ- 

ence are quite different from each other, both for 
MMW and PTT models. We used the same param- 
eters for the fitting of both viscosity and the first 
normal stress functions, which is more consistent 
and reasonable. 

We achieved a better fitting by adding more terms 
for the viscosity and normal stress functions as 
Souvaliotis and Beris did. For example, addition of 
one more term having a different relaxation time in 
the viscosity function can overcome the intrinsic 

1 0- l o o  h j  l o 1  1 o2 

Figure 8 Normalized first normal stress function for three polymer melts, 9: is the 
same as in Figure 3: (0) polystyrene, 180°C (data of Ballenger et al.*l); (0 )  high-density 
polyethylene, 160°C (data of Ballenger et al.'l); ( A )  phenoxy-A 212OC (data of Marshz2); 
(-) predicted values using eq. (11). 
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Table I1 Parameter Valuese Used in eq. (10) for Curve Fitting 

Polymer Melts nb c1 cz c3 A1 A2 

Low-density polyethylene (160°C) 
Low-density polyethylene (180°C) 
Low-density polyethylene (2OOOC) 
High-density polyethylene 
Polystyrene 
Phenoxy A 
LDPE-I“ 

0.13 -2.3234 4.88534 1.90635 0.058 3.892 
0.13 0.80434 1.86634 8.69734 0.121 2.773 
0.13 -3.9434 3.94734 4.26234 0.019 1.574 
0.2 0.8434 3.0334 8.84634 0.268 5.577 
0.2 0.7834 4.34 1.3935 0.151 1.965 
0.18 -1.90834 3.8434 8.38535 0.015 1.625 
0.18 0.17534 1.68734 1.943734 1.611 57.00 

a These are optimized values. Depending on the method of curve fitting, these values can be slightly varied. 
All n values are from WagnerI5 except LDPE-I which is from Laun.29 
LDPE-I is a very polydisperse and long chain branched low-density polyethylene used by Laun.” 

property of the cotangent function that always 
shows a sigmoidal behavior when the shear rate span 
in the transition region is large. As a test, we tried 
the following equation, 

7 = c1 + c2cot-1 (A,+) + cacot -l (A,?) 

The result is shown in Figures 11 and 12. The agree- 
ment with the experimental data is excellent. The 
first normal stress function agrees very well with 
experimental data over the six decades of variation! 
Even more importantly, we used the same parameter 
values for both functions which was not possible for 
the MWM and PTT model23 to fit the experimental 

+- c4 (12) data. 
1 + A,+ 

and then the first normal stress function from this 
function has the following form, 

CONCLUSlON 

Graessley’s model for steady shear viscosity function 
1 c2 1 c3 was modified to express the viscosity function ex- 

plicitly and accurate prediction, quantitatively as 
well as qualitatively, of the first normal stress func- 

1 C4A3 ( 13 ) tion was sought using Wagner’s relationship. Inverse 
n (1 + A,+)2 .  cotangent function having three parameters can fit 

= - n 1 + (A,+)2 + n 1 + ( A 2 + ) 2  

+ -  

102 
1 0- 1 o - ~  1 0- 101 

7 ( / sec ) 

Figure 9 Viscosity function of the low-density polyethylene I melt, (0 )  data of LaunZ9 
with: ( -  - -) predictions of the power-law modified White-Metzner modelz3 ( k  = -0.54); 
( -  - - -) predictions of the PTT modelz3 ( c  = 0.01 ) ; and (-) calculations of the current 
model, eq. ( 10). 
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Figure 10 The first normal stress function \kl of the low-density polyethylene I melt 
(0), data of Laun”: ( -  - -) predictions of the power-law extended White-Metzner modelz3 
(12  = -1.6); ( -  - -  -) predictions of the PTT modelz3 ( e  = 0.24); (-) predictions of the 
current model, eq. ( 1 1 ) .  

the viscosity function very well. But comparison of 
the first normal stress function prediction with ex- 
perimental data was not in good agreement at low 
shear rates where relaxation time is long, even 
though it definitely did not show any numerical ar- 
tifact, which occurred in Carreau’s model prediction. 

The chain retraction motion not accounted for in 
the entanglement model was thought to be a factor. 
Addition of irreversible nonaffine motion similar to 
that of the White-Metzner model supplements this 
pitfall and remarkably improves the agreement. This 
reminds us that the long relaxation time at low shear 

1 o2 
1 0- 1 0- ’ 10’ 

Y(/sec) 
Figure 11 Viscosity function of the low-density polyethylene I melt, ( O ) ,  data of LaunZ9 
with: (- - -) calculations of the current model using eq. ( 10) .  The fitting parameters values 
are c1 = 7.0432, c2 = 6.8333, c3 = 2.18634, XI = 0.252, X2 = 8.56. (-) calculations of the 
current model using eq. ( 12) .  The fitting parameters values are c1 = 1.9332, c2 = 3.4133, 
~3 = 1.45934, cq = 1.94434, A1 = 0.06, Xz = 2.323, = 57. 
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Figure 12 First normal stress function of the LDPE I melt, (0) data of LaunZ3: (-) 
predictions by the current model using eq. ( 13 ) ; (-  - - ) predictions using only the first two 
terms in eq. ( 13) ( n  = 0.18); other parameter values are the same as those in Figure 11. 

rates would be long enough for the polymer chains 
to retract from the macroscopic motion. The current 
model looks useful for the modeling of non-New- 
tonian fluid behavior in shear steady flow. We used 
the same parameter values for both the viscosity 
and the first normal stress function, which was not 
possible by the modified White-Metzner model or 
the Phan-Thien and Tanner model. 

The proposed model has five parameters that 
might be too many to be used for practical purposes. 
However, the inverse cotangent function shed light 
on a model that can fit the viscosity function with 
fewer parameters and accurately predict the first 
normal stress function. We believe improvement can 
be obtained using a simple model that takes into 
consideration the nonlinearity between the material 
functions and the shear rate. This might be worthy 
of further investigation and new results will be re- 
ported in a separate article.31 

The author wishes to express gratitude to Dr. Eunwon 
Han for helpful discussions and Youngwook Seo and 
Youngin Seo for their help in the manuscript preparation. 
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